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Transmitting signals from peripheral to central ner-
vous system are essentially done by nociceptors. The 

mechanisms and signaling pathways might be induced by 
many factors such as inflammation biomarkers, molecular 
biochemical which might be responsible to produce acute 
or chronic pain. Dorsal nerve ganglia (DRG) and trigeminal 
ganglion are the place that peripheral and central branch-
es meet each other where many biochemical factors 
would be induced by pain stimulus. The myelinated and 
unmyelinated fibers of nociceptors are responsible for me-
chanical stimulation and heat. The myelinated fibers are 
conducting acute pain (heat stimulation) and light touch 
(mechanical stimulation) while unmyelinated (called C fi-
bers) afferents are responsible for slow and non-localized 

pain.[1] Unlike myelinated fibers, unmyelinated afferents, C 
fibers, are mostly show sensitivities to heat stimulations. 
Therefore; C fibers are those which are being stimulated 
by chemical factors such as capsaicin, histamine and have 
a major role in itching.[2] The heterogeneity of C fibers has 
been described in many studies. There are some cellular 
receptors which are affected by neurochemicals and pep-
tides, calcitonin-gene related peptide (CGRP), exerted by 
C fibers. The expression of c-Ret neurotrophin receptors 
causes the over production of G-protein coupled recep-
tors and P2X₃.[3] The other functional categorizations of 
nociceptors are on the basis on their channel activations 
such as TRPV1 (heat), TRPM8 (cold), ASICs (acid), TRPA1 
(chemical).[4]

Transient receptor potential vanilloid 1 channels (TRPV1) which are playing an important role in conduction of pain 
signals to dorsal root ganglion (DRG), can be interacted by many external and internal factors. Food ingredients and 
herbal products have a great impact on these receptors. Topical application or oral consumption of these products are 
effective in reducing pain signals with different mechanisms of action. TRPV1 is involved in a various processes includ-
ing nociception, thermosensation and energy homeostasis. Role of capsaicin, unsaturated omega fatty acids, minerals, 
and herbal products in pain relief and molecular mechanisms are being discussed. However, some dietary supplemen-
tation with TRPV1 activity, such as capsaicin, show conflicting results. TRPV1 channels and their agonist elements may 
play a great impact in decreasing the risk of obesity and diabetes through different mechanisms including reducing 
inflammation. Therefore, TRPV1 could be dysregulated in obesity leading to the development of obesity, diabetes. 
Further, TRPV1 channels look like to be responsible in pancreatic insulin secretion. Hopefully, we could make it possible 
to produce natural food supplements to reduce pain by focusing on the role of TRPV1 channels. This will further help 
clinicians and surgeons to reduce pain post-surgical procedures just by modifying the patient’s diet.
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TRPV1 and Diabetes
Among all the mentioned nociceptor channels, the most 
important one is TRPV1 which contributes in many path-
ways. A sensor of heat over 42 °C, lipid-derived molecules, 
acidic environment and food bioactive components such 
as capsaicin are having a great impact on TRPV1 channel 
activation. Role of TRPV1 is not only has been descried in 
peripheral sensory fibers but also it has a pivotal role in 
visceral pain modification such as pancreatitis.[5] Moreover, 
reduced expression of TRPV1 can decrease weight gain and 
adjust glucose levels in type 2 diabetes in mice with high-
fat diet. In fact, the blockage of TRPV1 might be recognized 
as a new target in treatment of weight gain, obesity and 
diabetes. TRPV1 has been found in both peripheral and 
central nervous system. The various situations including 
inflammatory factors, acidic environment, lipid-bioactive 
compounds, growth factors impact on the activity of TRPV1.
[6] Some studies have shown that the lack of TRPV1 receptor 
in mice improves pain thresholds by reducing inflamma-
tory factors such as IL-1β.[7] The other role of TRPV1 is de-
scribed with anandamide which is a ligand of cannabinoid 
receptors. Anandamide as a TRPV1 agonist might be able 
to modify the endo-cannabinoid activity of pain signals.[8] 
The role of TRPV1 in control of weight and diabetes have 
been illustrated by many mechanisms such as reduction of 
inflammation in pancreatitis,[9] however; this is not limited 
only to pancreatitis, researchers have explained the role of 
TRP channels in regulation of whole body metabolism.

Diet and TRP Channels
A well-known cation exchange channel with great impact 
in body metabolism and energy expenditure is TRPV1 acti-
vated by both endogenous and exogenous triggers such as 
capsaicin and endovanilloids.[10] The beneficial effects of di-
etary and topical capsaicin in reducing obesity and diabe-
tes by activation of TRPV1 have been shown in many stud-
ies.[11, 12] The inflammatory factors such as tumor necrosis 
factor-alpha (TNFα), monocyte chemo-protein-1 (MCP-1), 
and interleukin (IL)-6 mRNA were reduced in mice fed with 
capsaicin supplements after ten weeks. Moreover, capsa-
icin diet can express the PPARα and TRPV1 in liver and adi-
pose tissue. In another study, only 3 weeks’ consumption 
of %0.015 capsaicin supplement remarkably lowered the 
metabolic syndrome indices in mice. Interestingly, topical 
cream of capsaicin has had a great efficacy in reducing the 
fat tissue in mice fed with high fat diet. The topical use of 
capsaicin also reduced glucose, cholesterol levels, overex-
pressed PPARα, PPARγ, and reduced inflammatory factors 
such as TNFα, IL-6.[13–15]

In addition to the effects of capsaicin on TRP channels, it 

is interesting to mention the role of cinnamon that has a 
great impact on diabetes control and lipid profile. Cinna-
mon is a spice which is extracted of tree called Cinnamo-
mun genus. There are some clinical trials which indicate 
that daily consumption of cinnamon for 40 days adjusted 
lipid profiles including cholesterol, and triglycerides as well 
as sharply declined glucose levels among 60 people with 
type 2 diabetes.[16, 17] The mechanism of action described 
as activation of insulin receptors and glucose uptake by 
cinnamon, however; it is important to indicate the role of 
PPARs and AMPK in this mechanism.[18] Cinnamaldehyde is 
the most crucial bioactive component of cinnamon which 
plays a great role as TRPV1 agonist. The other important in-
gredient which is common components of mustard, horse-
radish, and wasabi is allyl isothiocyanate (AITC).[19] Studies 
have shown the regulatory effect of AITC in hyperglycemia 
and insulin resistance is by mitochondrial function adjust-
ment. The improve of glucose tolerance and expression of 
glucose metabolism-related genes such as GLUT suggests 
that AITC probably activates TRPA1 with great impact on 
glucose uptake resulting improved impaired insulin signal-
ing. The other study has shown that N-terminal cysteine 
of TRPV1 is responsible for the activation mechanisms of 
TRPV1.[20, 21] Accumulating data shows the role of allicin, 
bioactive component of onion and garlic, in pain modifica-
tion mechanism through N-terminal cysteine of TRPV1. The 
electrophysiological findings in DRG neurons from mice 
described that TRPV1 and TRPA1 are responsible for onion 
and garlic extract, allicin, in pain signal regulation.

For many years the biological effects of traditional plants 
such as Saffron have attracted scientists’ attention. In ad-
dition to anti-inflammtory and anti-oxidant characteristics, 
saffron has antinociceptivs effects. Safranal, a bioactive 
component of saffron , is responsible for analgesic prop-
erties by reducing cytokines in central nervous system. 
Recently the role of safranal and its precursor, picrocrocin, 
has been identifies in activation of TRP channels. Contrary 
to TRPV1, the TRP ankyrin 1 (TRPA1), expressed by calcito-
nin gene related peptide (CGRP), has been shown to be 
activated by safranal, picrocrocin as well as allyl isothio-
cyanate (AITC) and cinnamaldehyde.[22] Safranal stimulates 
the TRPA1 by binding to cysteine residue to activate the 
calcium channels and currents in DRG neurons. The role of 
TRP channels including TRPV1 and TRPA1 in migraine at-
tacks has been recognized.[23] There are some food ingredi-
ents and herbal extracts that can attenuate these migraine 
attacks, however; the mechanism of action has not been 
studied.[24] The bioactive component of butterbur [Pet-
asites hybridus (L.), isopetasin, has a great impact in reduc-
ing migraine signals by stimulating calcium responses and 
currents in trigeminal ganglion (TG) neurons and TRPA1.[25] 
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Isopetasin also expressed CGRP in DRG neurons. Partheno-
lide, a derived product from feverfew (Tanacetum parthe-
nium), abolishes the evoking signals through TRPA1 and in-
hibition of CGRP release in treatment of migraine attacks.[26] 

Polyunsaturated Fatty Acids and TRPV1
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are es-
sential dietary fatty acids including eicosapentaenoic acid 
(EPA; 20:5 n-3), docosahexaenoic acid (DHA; 22:6 n-3), and 
linolenic acid (LNA; 18:3 n-3). The primary source of n-3 PU-
FAs are fish oils, vegetables and breast milk. DHA is highly 
concentrated in the brain and constitutes ∼50% of mem-
brane in the retina. The abundance of DHA in the brain sug-
gests essential roles for this fatty acid in neuronal function.
[27] The role of n-3 PUFAs has been described in pain relief 
in rheumatoid arthritis, inflammatory bowel disease and 
dysmenorrhea.[28] 

Moreover, some studies indicate that the administration of a 
high n-3/n-6 PUFA ratio in mice has increased pain threshold 
efficiently.[29] The mechanism of action is not clear very well, 
however, it is shown that the ability of n-3 PUFAs to compete 
with arachidonic acid for lipoxygenase is the main mecha-
nism to reduce inflammatory factors. Although n-3 PUFAs 
have a great role in reduction of neuron excitability to allevi-
ate pain signals, it is considered as a TRPV1 receptor as well. 
These fatty acids specially DHA has a great impact in activa-
tion of TRPV1 in a protein kinase C (PKC) dependent man-
ner compared with EPA and linoleic acid. However, EPA sig-
nificantly reduces capsaicin-induced pain in mice compared 
with DHA.[30] Long chain CoAs (LC-CoA) are also activators of 
the TRPV1 channel which interact with C-terminal TRP do-
main by modulating anionic phospholipid phosphatidylino-
sitol 4,5-bisphosphate (PIP2) residues in TRPV1. Interestingly, 
TRPV1 channel is modulated by LC-CoA through Ca2+ inde-
pendently. This is a new description of TRPV1 mechanism of 
action by bioactive components of our diet.[31]

Minerals and TRPV1
The health effects of Zine have been studied in many re-
search centers. The anti-inflammatory role of zinc and pain 
relief effects of zinc is being studies. One study has described 
that zinc can reduce pain in neuropathy after chemothera-
py by paclitaxel. Interestingly, zinc can inhibit TRPV1 chan-
nels in peripheral neuropathy in mice given paclitaxel.[32] It 
should be mentioned that zinc is a wound healing agent and 
can alleviate the pain through many mechanisms. There is 
a protein receptor on cell membrane, called NMDA, which 
shows a great sensitivity to zinc. Studies have shown that 
pain relief mechanism of zinc is through the inhibition of 
this NR2A-NMDA signal transduction.[33] Vitamin A and its 

derivatives such as retinoids which are playing a great role 
in cell proliferation in ophthalmic system, are vital in skin 
disorders and cancers. Scientists have discovered that the 
topical application of retinoids cause pain and hypersensi-
tivity through the activation of TRPV1, capsaicin receptor. 
This indicates that TRPV1 is a target of retinoids and helps to 
explore the new pain-relief methods.[34] In addition, there are 
some other minerals such as cadmium and copper which are 
interacted with TRPA1 in pulmonary sensory neurons. Tran-
sient receptor potential A1 (TRPA1) with similar structure to 
TRPV1 is expressed in pulmonary C-fiber afferents which is 
the main sensor for irritants in lung.[35] Isothiocyanate bioac-
tive compounds found in wasabi, horseradish and mustard 
owe their pungency have a great impact on TRP channels. 
Studies have described that topical application of mustard 
oil to skin causes pain and inflammation through the activa-
tion of sensory nerve endings.[36]

In conclusion, nociception is a vital defensive mechanism 
to detect harmful signals resulting in pain perception. 
Most of TRP ion channels work as primary receptors to de-
tect chemical, thermal, and mechanical noxious stimuli to 
evoke the pain and itch sensations. Among them TRPV1 
channels are which including members of the vanilloid 
subfamily (TRPV1, TRPV3, and TRPV4). Regarding to pro-
tective mechanisms as pain and itch, there should be an 
inhibitory molecular mechanism activated by food ingredi-
ents targeting specifically TRP channels. By developing safe 
and effective TRPV1-modulating bioactive components, a 
beneficial diet and herbal medicine protocols on the basis 
on dosing strategies will be made. Despite of clinical ap-
plications of pain relief drugs which target more than one 
specific channel, the administration of high-potency natu-
ral bioactive components will be useful in mechanism dis-
covery of functional-structural level.
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